• 1
  • 2
  • 幻灯
  • 幻灯
联系我们
  • 北京汇丰聚兴商贸有限公司
    联系人:甄庆举
    邮编:100161
    电话:010-69255388
    传真:010-61245818
    手机:13901290109
    邮箱:[email protected]
    地址:大兴矿务局储运公司(南六环北京开路东)
轴承钢精炼渣成渣工艺影响浅析
2014-08-07 10:44
来源:未知
点击数: 236          作者:未知
  • 高质量的轴承钢要求高的纯净度和组织均匀,即杂质元素和非金属夹杂少,碳化物细小且分布均匀。精炼渣具有脱氧、脱硫、去夹杂的作用,其性质直接影响LF精炼过程的冶金效果。精炼渣的组成、性质直接影响轴承钢的使用性能。本研究系统地讨论精炼渣成渣工艺影响作用规律,并对精炼渣的碱度和脱硫效果进行系统探讨,获得能够有效去除钢中硫和氧化物夹渣的精炼渣系。

    1、精炼渣组成

    传统的轴承钢精炼渣系主要是以CaO-Al2O3和CaO-SiO2-Al2O3的高碱度精炼渣系为主。由CaO-Al2O3二元相图可知:渣中存在低熔点的化合物12CaO·7Al2O3,可通过调节精炼渣中Al2O3含量降低熔渣的熔点,改善合成渣精炼的动力学条件。SiO2属于酸性氧化物,不利于精炼渣脱硫,但SiO2对熔渣的泡沫化性能有较大的影响。由CaO-Al2O3二元系和CaO-SiO2-Al2O3三元系表面张力图可知,SiO2属表面活性物质,其含量增加可降低表面张力,促进发泡,增加渣膜的弹性和强度。

    2、生产工艺对渣成分的影响

    生产轴承钢GCr15精炼过程采用三元精炼渣系,分别采取LD+LF+CC和LD+LF+VD+CC两种工艺生产。本研究以精炼渣系中的3种主要成分为研究对象,探讨其在精炼过程中的变化规律。图1是不同成渣工艺路线从炼钢出钢到精炼结束过程中渣样成分变化规律。图2是不同成渣工艺路线精炼过程二元碱度的变化规律。

    从两种工艺路线来看,成渣的过程基本一致。主要分为两个阶段:

    第1阶段从转炉出钢到精炼站之前,转炉冶炼采用高拉补吹操作,终点渣的碱度控制在3~3.5左右。出钢时采用挡渣塞挡渣出钢,出钢过程加入脱氧剂脱氧和合金化,并在炉后加入二元合成渣进行渣洗,以防止回磷。由于二元渣的加入,渣中CaO含量略有增加;转炉吹炼过程中未用含铝氧化物化渣,出钢渣的Al2O3含量不高;炼钢结束用铝镇定,渣中的Al2O3有所增加;利用硅铁锰铁进行合金化,渣中的SiO2含量有所提高。

    第2阶段为钢包精炼炉造渣过程,此过程中加入了合成渣、埋弧渣以及渣脱氧剂铝和电石。在此过程中,渣中SiO2和Al2O3的含量会有明显的降低。一方面在精炼过程中加入的脱氧剂铝会将渣中的SiO2还原,钢水会有不同程度的增硅现象;另一方面,主要是精炼过程中加入渣料,稀释了渣中SiO2和Al2O3的浓度。

    造渣过程前10min内形成白渣,精炼结束后控制终渣碱度为4.5~5.0。高碱度、流动性好、氧化性低的钢渣,利于钢渣界面反应,最大程度去除钢中的氧,并使钢中氧化物夹杂上浮,被精炼渣所吸收,提高钢水的纯净度。

    轴承钢从转炉出钢到精炼结束的成渣路线如图1所示。由图1可知:CaO在此过程含量基本维持不变;SiO2的含量是减少的,这是由于钢水中有较多的酸溶铝的缘故;而渣中Al2O3含量是略有增加的,一方面随着钢包处理时间的延长,大颗粒夹杂物有充足的时间上浮,另一方面精炼结束后对钢水进行弱搅拌,使细小的夹杂物能相互碰撞长大,上浮后被精炼渣所吸附,最后对钢水进行钙处理,使Al2O3系夹杂物得到变性,有效避免堵水口情况的发生,保证生产的稳定顺行。

    3、精炼过程碱度的变化规律

    精炼渣应具有吸收脱氧产物Al2O3夹杂的能力,以便在钢液进行吹氩搅拌过程中最大限度地降低氧化物夹杂的数量。以日本山阳工艺为代表的高碱度(R=4.5)渣系精炼轴承钢,硫以及Al2O3夹杂含量都降到了很低的程度。

    轴承钢精炼过程碱度的变化,以二元碱度为例,LD+LF+CC工艺,到达精炼站的碱度在3左右,精炼造渣过程碱度上升很快,精炼结束后的碱度维持在4~5之间;而LD+LF+VD+CC工艺精炼过程的碱度能达到6~7的水平,经真空脱气后,二元碱度略有下降,最后基本也在4左右。

友情链接:

Copyright @ 2014 All rights reserved | 北京汇丰聚兴商贸有限公司

京ICP备05044641号-1